Page 1 of 1

Scientific analysis of the Apple Retina display

Posted: Mon Jun 28, 2010 5:36 pm
by Sabre
Very cool Article!
Image
A “normal” human eye is considered to have standard visual acuity or 20/20 vision. This means that a 20/20 eye can discriminate two lines or two pixels separated by 1 arcminute (1/60 degree).

The ability of an optical system to resolve fine detail requires minute spacing of optical detectors. In the retina, there detectors are the photoreceptors. Objects we look at at projected through the cornea and lens and imaged on the back of the eye on a plane that ideally lines up with the retinal photoreceptors.

Theoretically the limit of retinal resolution, say the ability to distinguish patterns of alternating black and white lines is approximately 120pixels/degree in an optimal, healthy eye with no optical abnormalities. Again, this corresponds to one minute of arc or 0.000291 radians (π/(60*180)). If one assumes that the nominal focal length of the eye is approximately 16mm, an optimal distance from the eye for viewing detail might be around 12 inches away from the eye which is reasonable to assume for someone viewing detail on their iPhone.

Dr. Soneira’s claims are based upon a retinal calculation of .5 arcminutes which to my reading of the literature is too low. According to a relatively recent, but authoritative study of photoreceptor density in the human retina (Curcio, C.A., K.R. Sloan, R.E. Kalina and A.E. Hendrickson 1990 Human photoreceptor topography. J. Comp. Neurol. 292:497-523.), peak cone density in the human averages 199,000 cones/mm2 with a range of 100,000 to 324,000. Dr. Curcio et. al. calculated 77 cycles/degree or .78 arcminutes/cycle of *retinal* resolution. However, this does not take into account the optics of the system which degrade image quality somewhat giving a commonly accepted resolution of 1 arcminute/cycle. So, if a normal human eye can discriminate two points separated by 1 arcminute/cycle at a distance of a foot, we should be able to discriminate two points 89 micrometers apart which would work out to about 287 pixels per inch. Since the iPhone 4G display is comfortably higher than that measure at 326 pixels per inch, I’d find Apple’s claims stand up to what the human eye can perceive.

Re: Scientific analysis of the Apple Retina display

Posted: Tue Jun 29, 2010 12:25 am
by snaab
The new screen is impressive.





Also, I lost my glasses last year.

Re: Scientific analysis of the Apple Retina display

Posted: Tue Jun 29, 2010 10:32 am
by Raven
50% more pixels than my droid...is that really necessary?